AD=A119 321  SAN OIEGO STATE UNIV CA DEPY OF MATHEMATICAL SCIENCES F/6 20/1-
SIGNAL DETECTION FOR SPHERICALLY EXCHANGEABLE (SE) STOCHASTIC Pe=efTC(U)
AUG 82 C o BELL NO0O18=80=C=0208

UNCLASSIFIED 4=82 ’ . NL







SECUMTY CLASIINCAION OF TS PAGE (When Dme Sntered

'REPORT DOCUMENTATION PAGE i L
AT SOV ACCERON o] T RGP N T CATALOS wuNaEA
4-82 Ap-A119521

4 NITLE (any Sebtttle)

Signal Detection for Spherically Exchangeable
Stochastic Processes

S TYPQ OF AEPOAT § PEMOO COVERED
Technical

& PEAFQOMAING ORG. ASPOAT NuNEER

R LT
C. B. Bell

N00014-80-C-0208

i PERFORMING ORQANIZATION NANE AND AODOAEIS
San Diego State University
San Diego, CA 92182

3 RAd BLEMEMT. PRGICEY,
‘232 & WORK Uurf nu-.’lks

1. CONTAOLLING OFPFICR NnAME AND ADORESS
Office of Naval Research
Arlington, VA 22217

[} ne A NAME & ADODR. SNt & s from Contrelitng Offien)

2. REFOAT DATE

August 82

[ < —
13 NUNEENR OF PAGES
15 SECUMTY CLASS (of this rper))

Unclassified

1CA TNGRADIN
DULR

6 .

6. ASTROUTION STATEMENT (of s Repert)

17. ISTRIBUTION STATEMENT (of e sderast mtared in Sleck 20, If differant fem Repert)

Approved for public release; distribution unlimited.

e ——————————————
16 NPPLEuENTARY NOTES

T NEY VOADE (Cantinus on reveves sisn If Recoscy nd Igoniily by Mook mmber)
Spherically exhangeable, Gaussian, conditional; hi
data; radial distribution, nuisance parameter, su

storical and cross-sectional
fficient statistic,

statistical noise, Helmert matrix, 1ikelihood, Kolmogorov-Smirnov statistics.

§ A”?l“thm“"m.‘oﬁnb.m-n

sufficient statistics and statistical noise. Exte
Smirnov statistic are employed. Each technique is
examp1e.F§k

ignal detection problems with spherically exchangeable (Gaussian, condition-
ally Gaussian, and non-Gaussian) background noise are treated. Techniques
for both historical data and cross-sectional data are developed using

nstons of the Kolmogorov-
i1lustrated by a numerical

00 , %% 1473  coinon of ' nov 8 13 ossOLETE
$:M 3102~ Uh 014- 4401

—J&%m
SECUMTY CLAMIMCA [ [T ¥, e




SIGNAL DETECTION FOR SPHERICALLY EXCHANGEABLE (SE)

STOCHASTIC PROCESSES

C. B. Bell

San Diego State University

1. Introduction and Summary

Consider signal detection in the following context. The background
pure noise (PN) is produced by nature's choosing a parameter value and
then generating a time series according to a (stochastic process) law
with that parameter value. This process may be repeated N times. If
there is signal nresent, what is generated is a (N + S), noise-plus-
signal,time series. The statistical properties of the latter-type of
time series are different from those of the former.

In the sequel, one will be concerned primarily with the case in
which the parameter chosen is a variance and the time series subsequently
generated is an i.i.d. zero-mean Gaussian time series with that
variance. The variances are chosen by nature according to a positive
cdf, corresponding to which will be a radial distribution. [See
Appendix IIJ.

The signal detection procedures developed below will be valid not

only for the (conditional) Gaussian model, Q(S-S-E), described above,

This work was supported by the Office of Naval Research through Grant No.
N00014-8-C-0208.
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but also for a wider family (K-S-E) of pure noise (PN) stochastic
processes. This is because for all S-E (spherically exchangeable)
distributions, the set of observed radii {Rj} are sufficient, and
the set of "angles' are independent of the radii and have identical
uniform distributions. [See Section 2.C. and Apvendix II].

Five different signal detection models will be explicitly treated.
The treatment of these models will indicate how a variety of related
signal detection problems can be treated.

The paper is divided into ten sections. In Section 2, the basic
S-E data models are given. Section 3 presents the five detection
problems to be considered. Stntistical preliminartes are presented
for historical data and for cross-sectional data in Section 4. Detection
procedures for the five problems are developed in Section 5 through 9.

Open problems and concluding remarks are given in Section 10.

2. Data Structure of the Background Neise

It is assumed throughout that decisions are made on the basis of a
finite number of observations. The actual time series being observed
may be infinite, but one only uees a finite initial segment in the case
of historical data; and a finite number of finite initial segments for
cross-sectional data. In each case, the law, L, of the process
determines the distsibution of the initial segment, and vice versa. The two words
are sometimes used interchangeably.

The data to be considered is of the form 2 z where

Nl’ %2) LR ] '\N’




Z

Z, = (Zrl,-..., Zrk)’ and the probabilistic structures of interest are

given below.
(2A) Normal Spherical Exchangeability $(N-S-E)

N
2 Ik)’ i.e., the k components

%1, cees %N are i.i.d. N(g, o
of each Z-vector are i.i.d. N(O,oz). This is the original spherical
structure of interest. The family of laws of all such time series is
Q(N-S-E).

(2B) Schoenberg (1938) Spherical Exchangeability Q(S-S-E).

W ., W

N are i.*+.d. H(:), with H(0) = 0, and, condlitionally

17 -

given "r =W

r’ X

TIREEY er are i.i.d. N(o, llwr).

Definiticn 2.1. H(:) 1is called the mixing measure.

Here, one can say that each xrj , has a multivariate distribution
which is a variance-mixture of zero-mean normal random samples. If
H(-) is a one-point (i.e , degenerate) cdf then one has case (2A)
above. [Some relations between Q(S-S-E) and Gaussi»n Markov processes
is given in Appendix II.]. The family of laws of all such time series
is  Q(S-S-E).

(2C) Kelker Spherical Exchangeability, Q(K-S-E).

~
%1, %2, ooy %N are i.i.d. F(-), where %J = Rj'Xj' with

0)) Rj and Xi being independent; (2) Rj ~ J(-), where J(0) =0;
and (3) xj = (Vfl’ sess ij) being uniformly distr1buted over the
A
2 2 s
S* = = 1}, with R Z d V .
hypersphere S} [ ] 1, sgl and Vo _ii__




Definition 2.2. J(-) is called the radial cdf. Some examnles

of radial distributions are given in Avpendix II.

It is immediate that

Theorem 2.1. R(N-S-E) € Q(5-S-E) € Q(K-S-E).

Schoenberg (1938) essentially proved that

Theorem 2.2. For infinite time series,

Q(S-S-E) = Q(K-S-E).

From Lord (1954); Kelker (1970); Bell, Avadhani and Woodroofe (1970);

and Bell (1975, 1978), one has

" Theorem 2.3. Let % = (Zl, . . Zk) have a law L in Q(K-S-E).

m k
Then for 1 <m<k-1, [} z?] [] z;’]'l(!‘—;fﬂ) n~F(m, k - m).
1 m+1

[This is Fisher's F-distribution, with m and (k - m) degrees
of freedom].

The salient point here is that there are non-Gaussian laws for which
the F-distribution is valid.

These types of PN structures can be best illustrated by the following

examples.

1 e ng be i.i.d. N(0,5.4);

= (Zrl’ ooy zrg); and %1' cees %50 be i.i.d. The %r here are

Example 2.1. R(N-S-E). Let Zr

2
AT
initial segments of zero-mean i.i d. Gaussian time series.
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Example 2.2. Q(S-S-E). Let WI, ceey "20 be i.i.d. Exr (2.5).

Further, given wr =W, let zrl’ . zr8 be conditionally i.i.d.

N(o, l/wr). Then, the unconditional density of Zr is

8
N
2
f(zl, cees 28) = [w (21r exp { E :} (2.5) exp {-2.5wl}dw
" 8 , -5
= (120)7 [s.o+§zj] ; and 2), ... Z,, are

i.i.d. F(, «..5 *). [See Table II.1 of Appendix II.].

8
Ir this example, each R§ = Z Z?s , and the radial distribution
1 o
J(+) satisfies
J(y) = P{Rj <y} = !” F*(YWZ) (2.5) exp {-2.5w} dw,
0

where F*(:) is the Xi-cdf.
n
[Note: If H(-) were such that PH({S.Z}) =1, then f(t) would be

8
(10.43)-4 exp {- Tﬁlf ) zi} and the law would be in (N-S-F).]
' 1

Example 2.3. Q(K-S-E).

Let 2 er) and Z YA

Z.= (Zrl’ cees Zys ooes Iyg
with density of the form
-2 S
{k*e (2 , o0<lzl<o’
o 1 -
fl(zl,...,zs) =

L 0, otherwise

be i.i.d. Fl(‘.....

),




Then, the radial distribution, J (-) is U(0,8), i.e., Jj(y) = o1

0 <y <@. [See Table II.1 of Appendix II.]

If the common density for the %'s is of the form

n 5 -2 S
2 2
£,(2ys -+es 25) = K3 [g zj] exp {-A / E zj},

then the radial distribution satisfies
Jz(y) =1-exp {-)y}, y >o0.

[See Table 11.1.].
Statistical detection procedures frr these types of pure-noise data

involve the observed radii, Rl’ cees RN which function as sufficient

o V

N which are independent of the

statistics; and the "angles" Vl’
n

radii. [The V's are not direction-angle vectors as in polar coordinates.
~

The latter are discussed in Appendix II.]

For detection problems involving spvecific radial distributions one
uses the {Rj}’ while for detection problems involving the underlying
spherical structure, the {xj} are employed.

The signal detection models to be treated in the sequel are given

in the next section.

3. Some Signal Detection Problems

In each of the cases below, the PN (i.e., pure-noise) distribution

or law, L, 1is described. Data reflecting a different stochastic




process law would indicate that a signal is being received (in addition

to the pure noise).

3.1. Detection Problems with Historical Data

For these problems, one assumes that the total data available is

z2={z: 1<r<k}. (In terms of the preceding section, one has N
z hd

The problems are as follows.

PN, : L({zhH € QK-S-E)
N

This means the background pure noise is itself S-E.

PN, : L({i - al) € Q(K-S~-F) for some (unknown) a.

For this case, one hypothesizes that the pure noise is S-E about
some unknown point a, possibly not zero. If '"a'" is known, swbtraction

leads to PN1 above.

Certain other detection problems can only be handled when the data

is cross-sectional, i.e., the data is of the form below.

3

n,
= : h = (Z
YA where %r (

z rk)
AN

rl’ Ctc?

3.2. Detection Problems with Cross-Sectional Data.

PNS: L(%? = L0 e Q(K-S-E)

Here, one gives a specific pure-noise law. Any other stochastic

1).
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behavior of the data indicates signal is present. %1, cees %n are
i.i.d. and the associated i.i.d. radii Rl’ ey Rn are used in

the decision procedures.

PN,: L({% - a}) = L0 € (K-S-E) for some a.

This situation refers to a family of PN-laws indexed by "a",
a nuisance parameter. The decision procedures will involve radii modified
by '"estimates' of "a".

The final detection model to be considered is a two-sample model.
The observer observes two independent time series {Xr} and {Yr}’
and the pure-noise situation entails their stochastic laws being equal.
[See Bell (1964), Model 11.]

The data here is

where

Uﬂ,””XﬁL for 1 <r<m
Z =
nT

(le, ey Yrk) for m+1<r<N
PN, : L({xr}) = L({Yr})

The mechanisms for handling these five detection problems (and some related

problems) are given in the section below.




4. Statistical Preliminaries: Sufficient Statistics and Statistical

Noise.
For developing the methodology it is easier to consider first Q(S-S-E),

since the family consists of laws involving conditional Gaussian dis-

tributions. Nuisance parameters, and M-S-S's (minimal s1 .cient
statistics) can be handled in traditional ways. Then since .- "angles"
ﬂxj} have the same behavior for Q(N-S-F), (S-S-F) an ‘X~S-E),

the decision procedures developed can be extended from (& -E) to
Q(K-S-E).

One recalls that the above-mentioned extension is not necessary if
the data vectors are initial segments of infinite S-E time series. For
such cases (See Theorem 2.2) Q(S-S-E) = Q(K-S-EF).

To these ends, one now develops the mechanisms with Q(S-S-E) in mind.

(4A) Basic Statistics

n
Let Z be a data matrix with law L' in a family Q' admitting

A
a M-S-S (minimal sufficient statistic) S(2).

" n "
Definition 4.1 Let 6&(Z) = [S(Z), N(Z)] where (1) &(-) is

1-1 a.e.; (2) S(g) and N(g) are independent. Then (a) 6&(:) is
called the BDT (basic data transformation) for Q'; and (b) N(%)
is called the M-S-N (maximal statistical noise) for Q'.
[One should note that for any given family ', s(?), N(g) and
§(:) need not be unique.].
These entities are used in constructing families of detection statistice

with certain desirable properties.




(4B) Distribution-Free Statistics

n
Definition 4.2. (1) A statistic T(Z) is NPDF rt Q', if

n
there exists a cdf Q(-) such that P{T(Z) < y|L} = Q) for all
y and for all L in Q'.
N
(2) A family of statistiecs {T*(Z,L): L ¢ Q'} is PDF wrt €',

if there exists a c¢df Q*(-) such that

"
P{T*(Z,L) < y|L} =0Q*(y) for all y and for all

L in Q'.

A rule of thumb for the seguel is as follows.

4.A. For detection problems in which the PN-distribution involves
N n
a specific law, LO employ statistics of the form T*(Z,L)) = w*[S(Z),LO],

This entails using the data only via the M-S-S. Such statistics are

PDF wrt Q'.

4.B. For detection problems which are concerned with the general

n a
structure of the PN-family, employ statistics of the form T(Z) = Y(N(Z)).

This entails using the data only through the M-S-N. Such statistics

are NPDF wrt Q'.

. 27). This means

Example 4.1. Let LH € Q(S-S-E) and 2Z = (21,
N,

nature has chosen W = w, where W~ H(:), and given W = w, Zl’ cos 27

1 I 2.1/2
are conditionally i.i.d. N(0, 3). R= (] zj) is the M-S-S
1

for H(:), which determines and is determined by L (See Bell, et al, 1970).




- 11 -

Z1 Z7
x = (_i s eees _§J is M-S-N; and

8(2) = (R,V), where S(Z) =R and M(Z) = V. Now, let
N N N, n N,

z
- -1 -
T2 =V, = and T,(Z, Ly = J (R,

where JL(y) = P{R < y|H} = P{R < yILH}, i.e., J, s the radial cdf.
Then, Tl(-) is NPDF wrt §(S-S-E) with codf Q(z) = %-+ %— arc sin z,
|z|<%. T,(-,-) is PDF wrt Q(S-S-E).

Now for Q(K-S-E), R is the M-S-S for the radial distribution,

and X is M-S-N. Therefore, T, 1is NPDF wrt ©O(K-S-F), and

1

T, is PDF wrt Q(K-S-E).

2

[Note: For analyses somewhat different from that of the seaquel, one
needs a polar coordinate model, angular distributions, and the relations
between joint densities, radial distributions and characteristic

functions. These are given in Lord (1954); Kelker (1969); Smith (1971);

Bell and Smith (1970), and Ahmad (1975), and in Anpendix II.].

(4C) Extraneous Statistical Noise (E-S-N)

One further statistical tool involves the use of E-S-N. The
essentials of this method have been employed by several authors, e.g ,

Durbin (1961); and Bell and Doksum (1965).

Definition 4.3. Let % = (Zl’ cees Zk) be data governed by law L

in ' with M-S-§, S(Z); M-S-N NQ%); and BDT, &(:). Let
oy
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and be governed by L, in

s s, NI,
n n,

I = (Yl, ey Y be independent of

oM

K
t 3 L]
', Define X' to be [Yi, ceey Yk]

(n x is called FE-S-N (extaneous statistical noise); and
(2) X' is called R-5-N (randomized statistical noise).

Paralleling the proo*s of the aforementioned authors, one can prove

na.

Y.

Theorem 4.1. (Randomized Noise Theorem). X' Y

This result illustrates a method of imposing a known fusuallv tractable).
distribution on a problem in which the c¢df of the data is unknown.
It is particularly useful when the distribution of the M-S-N, N(%),

is relatively intractable.

Example 4.2. Let Z = (Z,, ..., Z,.) be i.i.d. N(0O,u*) where
zxamp’e 2.2 by 1 20

. _ . -
u* > 0 1is unknown. Let x = (Yl’ e Yzo) be independent of £
and 1i.i.d. N(0,1). Then, the BDT is such that &(2) = [S(Z), N(2)],
12, Vg, ooV v
= = - 1 =—l i
where S(Z) = R ) 2;, and  N(Z) =V, with V. =—f . Vv is

l -
uniformly distributed over the hypersphere S*(1) [See Section 2.C].

-1 _R_* = ] = Y!
§ [S(X),Zg(i)] = R (Zl’ ey 220) = (Yi, cees YZO) x , where

&%= § Y’ . Them, V!

1P e Y! are 1i.i.d. N(O 1).
1 )

20°

(4D) Nuisance Parameters and Kolmogorov-Smirnov Statistics

The next set of statistical tools of this section involve modified

K-S (Kolmogorov-Smirnov)statistics. The original statistic of this

] class was (Kolmogorov (1933))
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D(Fy: n) = Stzm [F (2) - Fy(2)[, where

n
r (z) = %— Z € (z - Zi)’ where Zl’ v » Z_ are i.i.d.
1 -

FO(-), continuous; and e(u) =1, if u>0, 0, if uc<o,

For several of the problems of the sequel, FO(-), is not known
coupietely. It is known to be a member of a family of cdfs: and
hence, there is a nuisance parameter involved. That is, FO(-) € Q" =
{F(-;0): 0 ¢ @.

For such situations, one uses extensions of the ideas of Lilliefors

(1967, 1969), Srinivasan (1971) and Choi (1980).

Definition 4.3. Let z=(Z,, ..., Z) be 1i.i.d. F. e Q=
————— n 1 n 0

{F(-;8): 0 ¢ ()}, where " admits a M-S-S, S(2), and a MLE,

A ~ ~ v

8, of 6. Let F (y) = F(y;8) for all y; and F .0) = E(Fn(y)IS(%)),

for all v.

(1) 6n = sup (Fn(y) ﬁ;(y)[, is the Lilliefors-type statistic

y
for Q"; and
" .
(2) D = sup |Fn(y) - Fn(y)l is the Srinivasan-type statistic for
y
Q.
Example 4.3. Llet Z = (Z,, ..., Z,;) be i.i.d. N(0,8). Then,

the M-S-S, S(%) = R, and the M-S-N, N(%) = x, where

15 A
2 _ 2 e 9 _ a . v15.
R® = g 2, Vy=g, end V= (Vs eens Vig). Then, Fyc(y) o(LR-h),
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Y]
) _ Jl, 1, -1y
Further F o(y) = E{F (y)[P} = P{Z; <y|R} =35+ L tan (R for

-R <y < R. The Lilliefors-type statistic is, then,

D = sup|F,_(v) - o~ 15)! , and the Srinivasan-tvpe
15 15 R
y
statistic is
v 1 .1 -1,y
D.. = sup IF (y) - [+ = tan (“J]'
15 -R<y<R 15 2 m R

Tables for both of thesc statistics are given in Apnendix I.

Example 4.4. Llet Z = (Zl, ceey 29) be i 1i.d. N(Q), where

2 v 2 1 3 =2

8= (u, o). Then S(2) = (Z,S;), where S; =3 g (z, - D% and
z, -7 Zq -2 .

NEZ) = 5, —-§;——) = (W, ..., §g). Here Dy =

sup ]FQCy) - ¢(ZL€?J§ )|. This is the statistic studied by lilliefors (1967).
y 2

N N v
Dy = sup [Fg(y) - Fq(y)|, where Fg(-),

is given by Srinivisan (1971), and is given explicitly in Example 6.2

of Appendix I.

N
What is of importance here is that each of the statistics DlS’ D15

~ 4"
D9 and Dg (of the preceding two examples) is a function of the data

only through the relevant M-S-N. In fact, one ran easily derive

15
A 1 ) )
(a) D¢ = sip IT§ § € (x Vj) o(x /15) |
15
v 1 1 1 -1
(b) D,p = sup |3 ) € (x-V,) - [5+=tan" "x]|;
15 -1<x<1 15 1 j 2 7
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and
~ 1 9
(c) Dy = sup |§ § € (x - Vj) - ox)|

oy
[The derivation for D, is not so straightforward.]

9
The final statistical tool of this section involves the use of

Helmert matrices.

(4E) Helmert Matrices, M-S-S's and M-S-N.

Definition 4.4. An (N x N) square matrix H, = {hij} is called a

Helmert matrix of order N if

/

for i =N

1
N

1
i@i-1)

for 1<i<N-1, 1<j<i-1
ij

=01 gr 1<i<N-1, j=i
AT

\ 0 for 1 <i<N-1, i+1<j<N
N
It is clear that each HN is orthogonal, and that

Theorem 4.1. If % = (zl, cers ZN) is governed by a law L in
T d
f1(XK-S-E) and é = % HN’ then % = %.
The Helmert matrix can in some circumstances be used to construct

the M-S-S and M-S-N.
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Example 4.5. (Gaussian Random Sample). Let % = (Zl, . 25) be
i.i.d. N(u, 02) and let Y = (Y., .. ,Y.) =2 ;T , Wwhere
"N 1 5 A S
A .1 0 0
2 /2
I N S
% . 6 /6 /6
-
A 11 -3 0
12 Y12 /12 /12
A1 11 -4
v20 V20 Y20 V20 V20
IR SN S .
R I

N(%) = (Vl, cens V4) where Vj =

Y., Y, and Y. are independent, with Y, ~ N(O, 02) for

1 2 '3 "4 5 j
R
1<j<4, and Y~ NS5, 0%). One has, then, that the M-S-S for (u,0°)
4
(2) = (Y, R*), where (R%)% = Jy?  and the M-S-N is
v > Y, 1

R* °

One can now treat the first detection nroblem.

S. S-E Background Noise.

PN: LeQ(K-S-E) vs N+5S, | ¢ Q(K-S-E)

As previously mentioned, the technique will be to develop the methodology

for

Q

(S-S-E), and extend its validity to ©Q(K-S-E).

For (S-S-E), one historical "look" yields Z = (Zl, cees ZN) which
Ly

-~ e b

—
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are i.i d. N(O, (w*)-l), given W = w*, where W~ H(:), with
H(0) = 0.

Then, one has

Theorem 5.1. Conditionally given W = w*,

(a) the M-S-S5 is S(Z) = R;
v Z, Zy
(b) the M-S-N is N(&) = X = (E— , i_);

(¢) the BDT is 6(%) = (R,V); and

(d) the MLE of w* is

From these entities, one derives the decision rule based on the

relevant statistics of Section 4.

Decision Rule 5.1: Decide N + Sl iff

By = swp [F () - ‘P(X-R@)l > d(@,N).
y

[Critical values a(a,N), are found in Table A.1 of Arpendix I.]

Decision Rule 5.2. Decide N + Sl iffe

n _ n,
Dy = sup [Fy) - [3 + 3 tan” 11> dea, ).

y
A
[Values of d(a,N) are given in Table A.2 of Appendix I.]

Decision Rule 5.3. Decide N + S1 iff

m 2 N 2 -1 N-m . '
T=[} Zj] [} 23] (—) < f' or >
1 m+l
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[The f£'- and f"-values are found in a Fisher's F-tabhle for m

and (N - m) degrees of freedom).

Decision Rule 5.4. Decide N + S1 if

N
1
D& = sgp | N ; e (z - Y}) - ¢(z)| > d(a,N), where x = (Yl, ae

i -S- v (Y ces
is E-S-N and I ( 1’ . YN)

d(a,N)-value are found in a standard one-sample K-S table].

is R-S-N as in Section 4C. ([The

[Note: If the data available is cross-sectional data, one might make the
adaptations in decision rules suggested at the end of Section 6].

All of the decision rules are illustrated in Anpendix I, Each
exanmple bears the same number as the decision rule which it illustrates,
e.f., Example 5.4, illustrates Decision Rule 5.4.

It should be noted that each of the decision rules of this section
involves the data solely via the M-S-N, x, and hence is NPDF. Alse
x is the M-S5-N for Q(S-S-F) as well as for Q(K-S-E). Hence, one

has

A N
Theorem 5 2. (1) Each of the statistics DN’ DN’ T, D& can he
~ a
written in the form w[X]’ i.e. DN = wI[X]; DN = WZ[X].
= / L
T = ¥yl and D =y, [V].
(2) Hence, each of these statistics is NPDF wrt Q(K-S-E).

The next detection problem involves two nuisance parameters from the

point of view of Q(S-S E).




6. Background Noise S-E about an unknown Point, a.

PN, : L({% - a}) € Q(K-S-E) for some point a vs

N + SZ: L({% - a}) ¢ Q(K-S-E) for any point a.

From the §(S-S-E) point of view, the historical data is Z = (Zl""’ Z.),
n,

which are c.i.i.d. N(a, (w*)'1), given W = w*.

Theorem 6.1. The basic statistics (conditionally) are then

(a) M-S-S: S(2) = (i‘,sx);
v X: - X
(b) M‘S‘N; N(X] = (Ul, ceey UN) = U’ l\’here U = _;I.-_;
"y n, Sx
(¢) BDT: &(2) = (X, Sy« U); and
n,

(d) MLE of (a, w*): (X, SD).
Some important decision rules are then as follows:

Decision Rule 6.1. Decide N + S2 iff

by = sup |Fy(v) - o=y ] > d(a,N).
N N S
y X
[The Lilliefors (1967) table yields critical values].

Decision Rule 6.2. Decide N + S, 1iff

N

o

X "
Dy = 5;’? [FyO) - By > d(a,n).

KLY
(Both FN(-) and the critical values are given by Srinivasan (1970).
See Example 6.2 of Appendix I.]

Decision Rule 6.3. Decide N + S2 iff




1
sup | &
y

Dy e (y - YJ!) - o(y)| > d(a,n)

[ S B

X, - X
i
Sx

), and Y veey Y is E-S-N.

|
where Yj 1’ N

Y + SY(
[The d(o,n) values are from the standard one-sample K-S table].

Some different procedures rtesult from employing Helmert matrices here.

Theorem 6.2. Let Y = (Y eay YN) =7 H; . Then conditionally, given
N

, .
1 N

W = w*, one has
(a) Yl, ceey YN are independent;
(®) Y, VN0, 1/w) for 1<i<N-1;
(c) Yy~ N(aA, —é;ﬁ;
N-1
(d) (Y\,R*) is the M-S-S; where ®* =[] Y]

Z.
= i Q. 3 =_1_.
(e) X (Vl’ ees VN—I) is the M-S-N, with Vj R and

YN - N
(f) (;ﬁ , (R*)z) is the MLE of (a, w*).

The new decision rules are based on an F-ratio and the empirical
N-1
1
. * 2 -
cdf Fﬁ_l( ), where FN-I(Z) N jzl € (z Yj).

Decision Rule 6.4. Decide N + S2 iff

/N1 n
Oy = 5w Ry, () - 0G| > daN-n).

[See Decision Rule 5.1, for critical values].

Decision Rule 6.5. Decide N + S2 iff




N

D tan'l(—i)]l > s(a n-1
N-1 p* ’ :

A

= sup [F2 (2) - [+
Z

[See Decision Rule 5.2 for critical values].

Decision Rule 6.6. Decide N + S2 iff

N-1

€ (z - X}) - ®(z)] > d(a,n - 1)

[l e I

]
Dy-p = s‘z’p 53

- - = R** 2
where é = (Xl, ey xN-l) is E-S-N and Xj = %= Yj and (R**)” =

N-1
Z Xz [See Decision Rule 5.4 for critical values].
1

Decision Rule 6.7. Decide N + S2 iff

N-1 -1
ZYZ] (————N-,mn-l)>f' or < f"

T2
T' = [2 Yj] [ j
1 m+l
[See Decision Rule 5.3 for critical values].

One should note that in the event that cross-sectional data is available,
some adjustments should be made in the decision rules of this section and
the preceding section. One such adjustment is suggested by the following
development, based on Bell (1975).

Let %1, %2, ceey %N be i.i.d. initial k-segments of time series

with common 1law L in Q(K-S-E). Then one has

Theorem 6.3. (1) P{('%l, 52) = (z11 coon Zyps Zogs .y 22k) is S-E}
N 7 = l
0; and (2) (’z.l, ‘z_k) is S-E, where z.j N r§1 zrj.

This result suggests that the decision rules of Section 5 and 6
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can be applied to the mean vectors of cross-sectional data.

Numerical examnles illustrating all of these decision rules are given

in Appendix I.

With so many decision rules being considered, it is natural to ask
which rules are better. More specifically, one might ask how the
decision rules based on the Z's compare with those based on the
Y's of this section. No definitive answers are knewn at this time.
[See Section 10].

One now turns to detection problems for which cross-sectional data

is necessary and available.

7. Goodness-of-Fit Detection Problems

PNS L= L0 € Q(K-S-E) vs N + 83: L#£1L

—

0

It is convenient to write the data in matrix form

Ne

As usual one views the problem first from the (S-S-E) viewpoint.

This means that W., ..., W, are i.i.d. H(-) with H(0) = 0;

1’ N
and Z,., ..., 2., are c.i.id. N(O, [W?]-l), given W, = w¥;
i jk j i3

for j =1, 2, ..., N.

k
. 2 2 _
One now defines Rj = mzl ij, xj = (le, ey ij) where
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Z, L N o |
= ilﬂ ; and G (2) = g e (z-R,).
j | !

jm N 1

It can be proved that

Theorem 7.1. Conditionallv, given Wi = w; for 1 <3j <N,
—_— N ] ]
(1) the M-S-S is S5(Z) = [R(1), ..., R(N)], the ordered radii;
~
-S- 1 = A} .
(2) the M-S-N is N(2Z) [R(Rl), ces R(RN , Xl’ f .y XN]’
and

(3 R Ry are i.i.d. Gy(*), where Gy(z) = PR, < zlLo},

1> 0 Ry
i.e., Gn(~) is th2 radial cdf.

A pertinent decision rule is as follows.

Decision Rule 7.1. Decide N + S3 iff

Dy = sup l6y(2) - 6,(2)] > d(@,m).

[See Decision Rules 5.4 and 6.6 for -~ritical values].

One aspect of the decision rule above worth knowing is the exact
relationship between LO’ the law in §(S-S-E) and Ho(-), the
rixing measure and cdf of the W's; and ¥B(~, ..., *} the joint

density function of % = (Zy, -0y ZN). It can he proved that

Theorem 7 2. (1) G,(2) = J: N (wz?)dH (z) where N (*) is the

cpf of a X, -distribution. (2) For fixed N, each of Go('), LO’

SR N

Hy(:) and £ (-, ... ) is determined by any other. ([See, e.g.,

|
[ Kelker (1971), Bell, et al (1970), Bell (1975).].
|
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This means that the detection problem PN3: L= LO is equivalent

—

to PN;: G=206 and, hence, the decision rule is '"'completcly relevant.’

0;

A related detection problem is treated in the next section.

8. Goodness-of-Fit With a Nuisance Parameter.

PN L({Zr - ah) = L0 € Q(K-S-E) for some "a" (possibly

4
non-zero)
Vs
N+ S,: For each a L({Zr - al) # LO.
n n, '\/'\JT
For the data matrix Z as in Section 7, one forms Y = Z HN =

Y11 e e e Ylk
YNl . YNk

For constructing the M-S-S and M-S-N one needs

(a) Y§ = ij for 1 <3 <N;
k-1

2 2
b R* = Y,
® @7 1Y
(¢} Y* = [Y*(1), . ., Y*(N)], the ordered Y*'s,

g%

(d) 5* = [R*(1), ..., R*(N)), the ordered R*'s;

Y.
= = 35
(e) V. (le, cees vk,k-l)’ where Vjs R? .

One has then,

= B L P

L .
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Theorem 8.1. Conditionallv, given wi = w¥ for 1 <j <N,

v 4"
(a) S(Z) = S(Y) [{*. 5*]; and

" "
(b) N(Z) N(Y)

[ROP -oos ROYS RRY), wovy, RRRYS Vs oty W

For the decision procedure, one needs the cdf of RI. Call it

G*(*) where Gs(z) = P{RI~§ z}.

Theorem 8 2. (a) 65(-) determines and is determ :d by LO

* * 3 3 *
(b) Rl’ ey RN are i.i.d. GO

t The decision rule is then

Decision Rule 8.1. [lecide N + S4 iff

N-1
D = sup | == Z € (z - R¥) - G*(2)] > d(a,N - 1).
z -1 i=1 ] 0

=z

This corresponds to a goodness-of-fit test for the modified radii
! {R;}. One could have used any one of a number of other goodness-of-fit
statistics, e.g., Cramer-von Mises. However, in this work, one uses con-
sistently the Kolmogorov-Smirnov statistics.

The final detection problem to be considered here is a two-sample

problem.

9. Signal Detection: A Two-sample Problem.

PNS: L1 = L2 e Q(K-S-E) vs N + SS: L1 # L2
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The data matrix here is

ST
Y Xp1 © X ok
LOVIRIRE,
le T Ynl:

where N=m+ n.

The relevant statistics are

K o2
I X, for 1<3i<m and

Js -
s=1
R =
]
|
L Y. for m+1<j<N.
s=1 IS -7

One now has

m
Decision Rule 9.1. Decide N + S5 iff z R(Ri) > a, or < a,.
1 !

[The table here is that for the Mann Whitney-Wilcoxon Rank-Sum Statistic].

Decigion Rule 9.2. Decide N + SS iff

p @ 1 N
D(m,n)= sup |= ] e(z ~-R,) -= } e (z-R,)] >d"(a,mn)
z ™1 ] N mel J

[The table here is that of the two sample K-S statistics].
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Again a large number of nonvarametric (NP) statistics are availahkle
for this detection problem. The two chosen abhove are representative and
have some optimal properties

The preceding developments lead to some interesting observations and

speculations.

10. Concluding Remarks and Open Problems.

(A) Parametric and NP Statistics

Signal detection problems related to SE time series utilize
parametric as well as NP techniques. The srhericity property allows one
to employ the F-statistic and other classical statistics; while the
families of rndial distributions are NP ir character. Hence, one
could have used a variety of goodness-of-fit and NP statistics. The
relative utilitv of these other statistics is at this time an open
question. [See (B) below].

(B) FDR__and Power. The procedures given in the text are reasonable

and commonly used. However very little precise information is available
on FDR and power. A series of definitive studies, evaluating FDR for
reasonable (N + S)-distributions, is needed. Some preliminary Monte
Carlo results have been relatively costly and less than definitive. As
of this writing, it is difficult to say which of the available procedures
is better than which others. In particular, one asks how do the pro-
cedures based on the Z's compare with those based on the Y's in

Section 6.
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(C) Polynomial Drift., Techniques were presented above for time

series S-E about 0 and about non-zero points '"a'". Of some
interest would be background noise which is SE about some polynomial
curve. This would be related to polynomial regression with SE
(rather than Gaussian) errors and should be also related to some
recent robustness studies.

(D) Guassian Markov Processes. It is developed in Apnendix II,

that S-F time series can be considered "imbedded' in certain mixtures
of some Gaussian Markov processes. It is an onen problem as to how
the very rich literature on Gaussian Markov processes can be brought
to bear on signal detection problems.

(E) Polar Coordinates. Some explicit detail about the polar

coordinate aspects of S-E times series is given in Appendix II. The
current interest in geometric probability may give some new insights
into developing signal detection procedures different from the rnes

presented in this paper.
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APPENDIX I

1. Tables
2. Data Sets

3. Numerical Examples

(The tables were computed by S. M. Lee. He, A. Mason, and G. Muse did

the computations for the numerical examples.)
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TABLES

A.1. Modified Lilliefors Table
A.2. Modified Srinivasan Table

(See Section 5).
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TABLE A.1. Critical Points “or Dn (See Decision Rule 5.1).
[Dn is a modified Lilliefors-type K-S statistics].
Sample
Size .01 0% .10 .15 .20 .25 30
2 0.8369 0.8202 0.7968 0.7697 0.7393 0.7062 0.6700
3 0.7975 0 7217 0.6566 0.5992 0.5507 0 5294 0.5107
4 0.7335 0.6210 0.5650 0.5289 0.4985 0.4701 0.4426
S 0.6603 0.5665 0.5074 N.4695 0.4403 0.4122 f, 3969
6 0.6071 0.5140 0.4639 Nn.4289 0.4002 0.3790 0.3615
7 0.5663 0.4766 0.4288 0.39 & 0.3752 0.3534 0.3355
8 0.5337 0.4497 0.4048 0 3739 0.3511 0.3322 0.3159
9 0.5048 0.4250 0.3823 0 3530 0.3318 0.3137 0.2981
10 0.4772 0.4005 0.3609 0.3351 0.3145 0.2978 0.2825
11 0.4659 0.3866 0.3458 0.3201 0.299¢ 0.2836 0.2695
12 0.4438 0.3709 0.3318 0.3069 0.2886 0.2725 N.2586
13 0.4278 0.3577 0 3198 0.2964 0.2774 0.2622 0.2491
14 0.4095 0.3411 0.3067 0.2838 0.2656 0.2513 0.2387
15 0.3973 0.3310 0.2974 0 2753 0.2589 0.2450 0.2328
16 0.3872 0.3215 0.2875 0.2674 0.2513 0.2374 0.2261
17 0.3769 0.3130 0.2819 0 2599 0.2439 0.2301 0 2186
18 0.3690 0.3024 0.2712 0.2511 0.2356 0.2226 0.2115
19 0.3567 0.2966 0.2655 0.2455 n.2311 0.2183 0.2078
20 0 3479 0.2896 0.2598 0.2408 0.2260 0.2137 0.2029
21 0.3369 0.2820 0.2521 0 2333 0.2193 0,2075 0.1973
22 0.3544 0.2781 0.2473 0.2284 0.2141 0.2023 0.1927
23 0.3189 0.2704 0.2415 0.2233 0 2097 0.1986 0.1888
24 0 3172 0.2627 0.2361 0.2183 0.2048 0.1938 0.1847
25 0.3082 0 2558 0.2306 0.2139 0.2015 0.1906 0.1809
26 0.3054 0.2551 0.2266 0 2095 0.1968 0.1863 0.1774
27 0.3016 0.2500 0.2244 0.2076 0.1943 0.1838 0.1750
28 0.2903 0.2444 0.2189 0.2031 0.1906 0.18n3 0.1718
29 0.2897 0.2416 0.2169 0.2001 0 1879 0.1782 0.1689
30 0.2843 0.2356 0.2121 0.1975 0. 853 0.1748 0.1662

[Table computed by S. M.

Lee,

20,000 repititions].

e — ]




LuOb° 0
766¢£°0
8L6£°0
8L6£°0
296£°0
L96g "V
156€ °0
eP6e 0
€26£°0
s16¢°0
Zi6g° 0
64880
88270
088¢°0
SS8E O
9v8¢° 0
¢r8e 0
618¢°0
LE8Y
86.¢
[6ly
96L¢
14023
LLLE
918¢
068¢
LIV v
|8742200)
y8¥L" 0

coclCccccc

(U

vzov'o
a10v°0
100v°0
866%°0
066£°0
086¢°0
vl6g° 0
¢L6e 0
8v6L U
¢v6e U
Iv6e 0
luoe 0
065270
606g°0
£88¢°0Q
I8s5¢°0
698¢ "0
uiB8e U
88870
rse 0
6288V
298870
LS8E 70
89870
2¢6£°0
966¢ U
Zsev o
16Sv° 0
veLST0

s5e°

ovov' o
Ivov° 0
1 IAY) A1)
0cov° 0
Loy v
Pa Oy 0
8u6E° 0
S66¢ v
LL6E
696¢
SL6E
oves
ve6ge
8L6¢
Zleg
976¢ "
Z16¢
olog
616¢ "
£68¢
688¢
0Z6¢
L16%
656¢
0Zov-o
1¢lv U
86L ¥V
PLLY O
L16S°0

cCcCcoCcCcCcoCcocoCcooCc oo

og”

990¥ ‘v L80V°0
990¥%° 0 £60V°0
050+ "0 SL0v°0
0sov°u 6L0v O
ovov°o viuv 0
Icov 0 190v°0
vZov-o 8S0¥°0
veor°o 0scy°o
ST0v°0 yyor-o
toov o veov©o
SOouvu 880v°0
286£°0 1¢0v°0
€L68°0 c1ov°o
9L6£°0 LZov° o
1S62°0 S566.°0
69uE "0 L1I0V"0
£56£°0 £00v° 0
0Sue "0 £10v°0
12670 £e0v° 0
1243V STur°0
9Pes 0 966¢£°0
§86¢°0 680V °0
otov°0 00tv' o
user o Zviviu
LZIY'0 6eCr° 0
8¢y’ 0 0Ler°0
809" 0 L9LY™0
610S°0 62¢S°0
Svi9°0 08¢€9°0

T 0z

AR AN
8Z1v°0
10I$°0
oziv-o
901v°0
660¥°0
¥60v° 0
¢01y° 0
080V ° 0
180v°0
680t°0
vLOP 0
950v°0
880V°0
S90P 0O
690%v°0
690¥°0
160F¥°0
660v°0
S80%° 0
990%° 0
LLTY 0
20Zv v
12270
Oyey 0
06SV° 0
SS64°0
SEVPS° O
c£99°0

ST’

091¥ 0
081¥°0
ISTIv°0
9L1¥°0
¢s1vo
iy’ o
8¢1Iv 0
LSIV'O
oriv v
€CIv-0
8viv 0
veIv o
LO1¥°0
iy o
12R L AKY
8viv' 0
gsIv’o
9LIV 0
P61¥°0
6L1v L
9911°0
SLZV'0
yyeEv-o
Ievv'o
62SV° 0
16Lv°0
£02S°0
LPLS U
L069°0

otr°

91Zv°0
6£Cv°0
£ezr’ o
6vZy 0
Lzzvo
0zZv-0
81Z¢v°0
LgZY’ 0
v’ o
ocer o
Iszv°o
91Zy° 0
124 AN
L2y’ o
1274 ANV
¥8Zy 0
66¢v°0
09gv°0
83¢v°0
cLev’ o
IS¢y 0
8LVV°0
€9Sv°0
L0L¥°0
618Y°0
€21s°0
00SS°0
v019° 0
9LT1.°0

S0°

SYEY 0 os
9LEY° 0 6
8¥EY° 0 82
ovsy 0 Lz
6SEP°0 9z
9YEY* 0 sz
8YSY°0 74
LSV 0 £
LLSP'O b4 4
SLEV'O 1z
LZYY°0 0z
00v¥° 0 61
06S¥°0 S
oSty 0 L1
ZLPY0 91
66y 0 ST
16.%°0 Al
9LSP°0 €1
9Z9t° 0 Z1
Zvor° o 1
SZLY' 0 o1
v¥8¥ -0 6
1105°0 8
6¥0S 0 L
92£S°0 9
_6V5°0 S
$209°'0 v
££99°0 €
1SvL 0 r4
10° 2218
a1dures

*[or3stIv3s §-) odA3-ueseATUTIS [:BTFTIPOW B ST :au
.

u

*(2°S a1ny uorsId8Qg 83S) @

"

JO sonyep [ed131I)

"2V 18Vl




Data Sets
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(The data sets herein were generated as described in Section 1, and in

Section 2.C.

in Q(S-S-E).

The actual laws of the underlying stochastic processes are

o+ e e e e o -
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Data Set B.

(Ten independent random samples of size 6 from an Exp (0.5} population)

%13 %23 X33 X43 %55 X63 X 5%

1.0784 1.5952 9.2919 1.7778 1.1270  0.2590 2.5215  3.3584 |

0.5370 0.9007 0.1444 1.5916 1.6744 1.5387  1.0644  0.6366 :

0.5882 1.6478 2.9246 4.0697 0.3525 2.1723  1.9591  1.4134

1.3147 2.9117 4.0288 1.0712 0.2252 1.6121  1.8606 1.3757

4.3221 2.0311 1.2146 0.1451 5.2428 1.8572  2.4688  1.9322 |

0.5331 7.4930 2.1394 9.8953 1.4496  0.4987 3.6681 4.0134 ,

5.5134 1.8511 2.5914 3.7042 2.4613  0.8480 2.8282 1.6151 |
0.5144 2.6477 7.3539 1.5439 1.2565 1.5495 2.4776  2.4853

1.1833 0.3628 1.3510 0.2951 7.6608  5.6672 2.7473  3.1286

0.5530 0.2034 1.2320 0.7505 0.7187 5.2019 1.4432 1.8711
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Numerical Examples for Section S.

PNy L e QK-S-E)  vs. N+ S.:L¢QK-S-E)

5.1 Modified Lilliefors
5.2 Modified Srinivasan
5.3. F-test

5.4 E-S5-N

The examples here are numbered corresponding to the decision rules of

the text.

Rt NN S



—_——— =

Data:

Decide N + S

value is D

Example 5.1.

-42 -

PN, : Le Q(K-8-E) vs.

WO WM e WN M

1

-~

From Table A.l, one finds

19

= 0.195.

2.38000E-2
9.20000E-2
-1.73000E-2
-8.65000E-2
1.07300E-1
1.73000E-2
-2.77500E-1
5.77000E-2
-1.36800E-1
2.03100E-1
~1.61000E-2
5.77000E-2
5.54000E-2
7.24000E-2
3.72000E-2
~1.01300E-1
~-6.78000E-2
1.25300E~1
1.06800E-1

N +5S

1°

D_ = sup |FN(y) - 0(@)' > 3(a,N)

d(.05,19) = 0.2966.

[ ¢ 92(K-S-E)

Therefore, one decides PN.

The obtained statistic

et



Example 5.2.

PNl:

Data:

Decide N +

~
N

N
From Table A.2, one finds d4(.05,20) = 0.4251. The obtained statistic

N
value is D

Le Q(k-S-E) vs.

s

y

20

1

VoUW

iff

1
D, = sup |FN(y) -G+

= 0.512,

1.76000E2
1.88000E2
7.11000E2
7.32000E2
6.10000E2
1.00800E3
1.02400E3
1.19500E3
7.36000E2
1.19600E3
1.18100E3
1.04400E3
1.24500E3
1.50600E3
1.57600E3
1.34600E3
1.10300E3
1.29600E3
9.81000E2
1.44000E3

1

n

Therefo

43 -

N+ S L ¢ a(k-S-E)

- n
tan 1(%)] | > a(a,™

re, decide N + S.

-



—_— e —
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Exaggle 5.3,

PNi: L e Q(K-S-E) vs. N + $;: L d Q(K-S-F)
Data:
i = [6.9707, 6.987°, 7.0079, 6.996" 7.0322, 6.9174, 6.9523,

7.0079, 7.0597, 7.0263]

F-statistic

5 2
Iz
1 246.202 _
T=0 5 244,496 = 1.007
E

Decide N + S1 iff T > F(S,S,.975) = 7.1464

or T < F(S,S,.OZS) = .1399 |

Therefore,

decide PN,

Example 5.4.

PNy: L e QK-S-E) vs. N+ S;: L ¢ 9k-5-E)

Data:

% = [6.971, 6.988, 7.098, 6.996, 7.032, 6.917, 6.952,

i 7.008, 7.060, 7.026)
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E-S-N:

Generate Y = (Y,, ..., Y..) i.i.d. ¢ independent of Z.
N 1 10 N

Y = [-0.511, ~0.884, 0.307, -1.169, 1.146, -1.107, 0.140,
N

-0.168, 1.698, 0.143]
1/2

10 ,
BZ = ( g zj) 22.152

o

1/2 _ 5. 827

10 2
RY=(§YJ.)

"

N ey

% = (.128)%

= [0.890, 0.894, 0.909, 0.895, 0.900, 0.885, 0.890,

0.897, 0.904, 0.899)

Test statistic:

1 10
Dﬁ=snzxp 1o %‘e (z - V)) - 9(2)]

= n:x {max[®(2) - E-i-a—-}‘a -li‘-o' - $(2)]}
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k
*VK-| 15 -
k -1
k vay | eva) | T | evek)
1 0.885 .8120 .8120 -
2 0.890 .8133 .7133 -
3 0.890 .8133 .6133 -
4 0.894 .8143 .5143 -
5 0.895 .8146 .4146 -
6 0.897 . 8151 .3151 -
7 0.899 .8156 .2156 -
8 0.900 .8159 .1159 -
9 0.904 .8170 .0170 .0830
10 0.909 .8183 - 1817
'h = -8120 > .410 (o = .05)

10 ~

Decide N + S

Numerical Examples for Section 6.

6.1
6.2
6.3
6.4
6.5
6.6

6.7

PN2 :

Lilliefors

Srinivasan

E-S-N

Helmert => modified Lilliefors

Helmert =>» modified Srinivasan

Helmert => E-S-N

Helmert =2 F-Test

L({% - a}) € Q(K-S-E) vs. N+ S,: L({% - a}) ¢ Q(KX-S-E)

SRR R SR S e S e — T
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Example 6.1.
PN,: L({i - ale Q(K-S-E) for some a
vs. N+ 8, L({% - a}) ¢ Q(K-S-E) for any a

Data Set D was used:

1st case: historical data (''first look")

2nd case: cross-sectional data (means)

Lilliefors (1967)

N 2
§ Xj X (XJ - X)
k3 1
1. Compute X = —.-.—ﬁ—..— and sx = ...._ﬁ._-__l.——.-—

2. Determine order statistics X(1), X(2), ..., X(n).

3. Compute Lilliefors statistic

A z-X
Dy snzxp ,FN(Z) - °(—§;—)|

k N

= max {max [0(’5; Xy, k-1, % o(is-;—-’i)]}

4. Decide N + S iff 6N>&(a,m where d(a,N) is obtained from

Lilliefors' table.

e A e A i g e e s s et
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Case 1: Lilliefors method (historical data)

Data Set D (1st '"look'’)

X, = 6.3290 si = 1.7008 S, = 1.3041
X
1 1
Z-X.
W= (28 k-1 k
1 3.4160 | -2.2337 | .0127 .0127 . .1540
2 6.8105 .3692 | .6440 .4773 -
3 6.8522 .4012 | .6600 .3267 -
4 6.9583 .4826 | .6855 .1855 -
5 6.9661 .4885 | .6870 .0203 .1463
6 6.9707 .4921 | .6895 - .3105
66 = .4773 > .319 (a = .05) Decide N + S.
Case 2: Lilliefors method (cross-sectional data)
Data Set D
Yo = 6.9006 s = .2349 Sc = .4846
X X X
2 Z-X
By = sup |Fy(2) - o 5 )|

= max {max [O(zs; x) - kla 1. %5-- 0(25;—501}

k

————— e e e

o —— — e e e -

fre oy e e e
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k Z(k) X o (w)
1 6.1475 -1.5664 | .0585 .0585 .0415
2 6.3290 -1.1919 | .1165 .0165 .0835
3 6.4858 - .8684 | .3070 .1070 -
4 6.7568 - .3088 | .379 .0790 .0210
5 6.7813 - .2586 | .3980 - .1020
6 6.8378 - .1415 | .443s - .1565
7 7.2096 - .6252 | .7340 .1340 -
8 7.3357 .8120 .1120 -
9 7.5368 1.3005 | .903s5 .1035 -
10 7.6456 1.5249 | .9365 .0365 .0635
510 = .1565 < .258 (a = .05)  Decide PN
Exggple 6.2.

Srinivasan (1970)

The Srinivasan statistic is
R N
Dy = sup |Fy(z) - Fy(2)|
z

where

FN(z) is the empirical distribution function

n
Fy(2) = E[FN(z)IM-S-S]; and the

< - 2
M-§-S is S(é) = (X, Sx). Hence

u v o2
3} f(xllx, sx)dx,

4"
Fo(u;u.oz) = I
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where 1 —
1/2 T - 1] X - X
- a2 n 2 1 1
£0X. | X, S)) = ) — .31 - .
1 X n -1 “F(%{n -2 2 Sy
V(u)
?o(u;u,oz) =1 - I g(y)dy;
0
e(y) = F§n—2) > yn/2-2 a - y)n/2-2;
{rcf[n-z])}
and
- 1/2
w - d o i ey,
X

Computation of Srinivasan statistic for n = 10

i a set of hi i \ :
Given of historical data: xl, xz, --es Xip

PN,: L({X -~ a}) € Q(K-S-E)
4V
(i.e., S-E about some unknown a).

1. Compute order statistics X(1), X(2), ..., X(10)

2. Compute X and Sy -

2 —
3. Evaluate V(u) = % {1+ (n—r_‘-l—) (ls;—!)}
X

with u=X(j) and n=10 for j=1, ..., 10,

ie., VIX(j)] =3 {1+ 1%@ ﬁififgilq} for j =1, ...

4. Evaluate

X one wishes to test

» 10




v . 2
FO[X(J);u.o ]

- 851 -

1 - (VIX()1Y (35 - 84 V{X(§)]

+ 70 {V[xcj)]}2 - 20{V[X(j)]}3]

el

% s N 2
D, = max - FolX(3) 50,07
1<j<10
_ _ X-X(j
j X. X(j X.-X X.-X S VIX(
j 5 () ; ( ; ) X [X(3)1]
1 -.4979 .4979 -.2504 .0627 1.2743 | 1.1716
2 -.4105 .4788 -.1630 .0266 1.1771 | 1.1204
3 -.0182 .4105 .2293 .0526 .8295 .9372
4 .0388 .3687 .2863 .0820 .6168 .8251
5 -.2179 .3322 .0296 .0009 .4310 .7272
6 -.2353 .2353 .0122 .0001 -.0621 .4673
7 .0454 .2179 .2929 .0858 -.1506 .4206
8 -.4788 .0182 -.2313 .0535 -1.1669 | -.1150
9 -.3322 .0388 -.0847 .0072 -1.4570 | -.2679
10 -.3687 .0454 -.1212 .0147 -1.4906 | -.2856
X = -.2475 = .0386

— .




e

iiyq2 iv143 . Y .
VXGYIT™ VX 11° vxdn i Fo[X(3)]
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H N
o = FolX(3)]

QWO NAUIE NN -

—

1.3726
1.2553
.8783
.6808
.5288
.2184
.1769
.0132
.0718
.0816

.6082
.4064
.8232
.5617
. 3846
.1020
.0744
.0015
.0192
.0233

1.8842
1.5758
.7715
.4635
.2797
.0477
.0313
.0002
.0052
.0067

.0511
.0082
.0031
.0203
.0940
.5709
.6693
.9909
.6728
.5634

.0489
.1918
.2969
. 3797
.4060
.0291
.0307

.2272
.4366

Decide N + S

N

D10 > d(.05,10)=0.

X

Exggple 6.3.

E-S-N

[Durbin (1961)].

Compute

iff

X and S,.

N

X

24. p
. Dyg= .4366-

Generate, by standard methods,

E-S-N:

let Y!
J

If Xl,

Determine order statistics

, XN € Q(K-S-E) then (Yi. Y), ..

Yl’ Y2’ evey Y
=Y + §x (X,
x J
XZ’ oo
] L} 1
YI'YZ s seey YN

N

Decide N + S,

The procedure is as follows.

idd ¢ independent of 5

-X)

Y'(1), vy'(2), ...

»

d
<y Yr:]) = (le st

Y'(N)

oY)
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6. Use Kolmogorov-Smirnov test:

Dy = sup [Fy(2) - Fy(2)]
= max [max {®[Y'(k)] - Eil-, %-* o[Y' (k)1

k

7. Decide N + S iff Dﬁ'> d(a,N) where d(a,N) is value from

Kolmogorov-Smirnov tables.

On applying the above procedure to Data Set D, one finds:

N

uy = 6.9066; S¢ = .2349; Si-= .4846;

>4

M-5-N: NQ%) = [-1.5664, -1.1919, -,8684, -.3088, -.2586, -.1415

.6252, .8854, 1.3005, 1.5249];

E-S-N: Y = [.807, -1.306, .875, -.081, -1.056, 1.241, 1.126, -.397,
.244, 1.207]; and
¥ = .266 $; = .8019 5, = 8955
Yl = .266 + (.8955)(-1.5664) = -1.1367
Y) = -.8013 Yy = -.5117 Y} = -.0105
YL = .0344 Y, = .1393 Yy = .8259
Y} = 1.0589 Y} = 1.4306 Yi, = 1.6315
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the computations for the K-S test are as given below:

K v eyl elrl- Xp o A5 - ey ]
1 -1.1367 .1280 .1280 -
2 - .8013 .2080 .1080 -
3 - .5117 .3040 .1040 -
4 - .0105 .4940 .1940 -
5 .0344 .5135 L1135 -
6 .1393 .5550 .0550 .0450
7 . 8259 . 7955 .1955 -
8 1.0589 .8550 . 1550 -
9 1.4306 .9238 .1238 -
10 1.6315 .9487 .0487 .0513
D;O = ,1955 < .410 (a = .05) Decide PN.
Examples 6.4 - 6.7
PN, * L({% - ade Q(K-S-E) for some a.
Vvs.
N+ S,: L({% - aD ¢ Q(K-S-E) for any a.

For these four examples one multiplies the original data vector by the
Helmert matrix of appropriate dimension and reverts to the methods of

Examples 5.1- 5.4,




- 55 -

Original data: % The Data Vector, after being multiplied

1 5.33300E-1
2 ~-7.51000E-2
3 6.25200E-1
4 9.73000E-2
5 -4,60300E-1
6 -1.43000E-2
7 -2.29600E-1
8 -4,33000E-2
9 -1.74400E-1
10 -3.57700E-1
11 1.70900E-1
12 -4.59800E-~1
13 6.54100E-1
14 5.53200E-~1
15 1.18600E-1
16 -3.62000E-1
17 4.65700E-1
18 -4.56600E-1
19 5.39000E-1
Exgggle 6.4.

Decide N + S if

N

4.30204E-1
-3.23414E-1
2.28486E-1
6.75717E-~1
1.44580E-1
3.21522E-1
1.04178E-1
2.15479E-1
3.66623E-1
-1.72377E-1
4 ,46492E-1
-6.59488E-1
-5.13337E-1
-5.80276E-2
4.11059E-1
-4,16864E-1
5.03291E-1
-4.92980E-1
2.57909E-1

By = s 17,00 - o WL > AN - 1)

by the Helmert Matrix size 19 is: x

From Table A.1, one finds 3(.05, 18) = 0.3024. The calculated value :f

the statistic is

D18 = 0.214

Therefore, decide PN.
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Example 6.5.

Decide N + S iff

B = sup |F* . (z) + [l-- l-tan'l(z—)]] > g(a N-1)
N-1 zp N-1 2w R ’

n
From Table A.2, one finds d(.05, 18) = 0.4233. The calculated value of

o
the statistic is D., = 0.373. Therefore, decide PN.

18

Example 6.6.

_ _ T _ .
Let I = [Yl, cee, Ylg] = % ng where % = [Zl, cees 219] is

the original data.
Generate é = [Xl, cees X18] i.i.d. ¢ independent of the original
data.

18 18
Compute R* = (J Y:'?)l/2 and R** = (Z )(J?)l/2
1 1

R**

= '
Generate é' (x:H ..., Xis] where xj . 3

Decide N + S iff

18

- 1 -
Dig = s:p | 15 g @ - x;) ®(z)| > 4(.05, 18)

The calculations yield:

E-S§-N: X = [.089, .233, .912, -1.10, -.515, 1.58, -1.41, -.245, 2.24,
-_— n

-.149, 1.639, ~.798, -1.888, .344, .647, .718, -.125]

2,.1/2

18
R** = (Z x5 = 4.467
1 J

18
R* = (] Y?)I/Z = 1.793
1
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R-S-N: X' = [1.071, -.805, .568, 1.684, .361, .802, .259, .536, .914,
- N
-.428, 1.111, -1.642, -1.278, -.144, 1.024, -1.039,

1.253, 1.228)

k-1 k__ ' ' k-1

kK X'(k) e[X'(x)] ks1s 18 18 - X)) ex'()] - 33

1 |-1.642 .045 056 | o .011 .045

2 |-1.278 .101 111 .056 .010 .045

3 [-1.039 .149 .167 111 .018 .048

4 |- .805 .210 .222 .167 .012 .043

5 |- .428 .334 .278 .222 - 112

6 |- .144 .443 .333 .278 - .165

7 .259 .602 .389 .333 - .269 |
8 .361 .641 .444 .389 - .252 l
9 .536 .704 .500 .444 - .260
10 .568 .715 .556 .500 - .215

11 .802 .789 .611 .556 - .233
12 .914 .820 .667 .611 - .209
13 | 1.024 .847 .722 .667 - .180

14 1.071 .858 .778 .722 - .136

15 1.111 .867 .833 .778 - .089
16 | 1.228 .890 .889 .833 - .057

17 | 1.253 .895 .944 .889 .049 .006
18 | 1.684 .954 1 .944 .046 .010

-

Decide N + S iff Di8 > d(.05, 18) = .309. Di8 = .269.

Decide PN.
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Example 6.7.
Decide N + § iff
1]
] Y
1 N-m-1
T =53 2 > Finem-1,m,1-0/2)
) y?
m+l J

or < F(N—m-l,m,a/Z)
Critical values are: (N=19, m=9, o= .05)

Flo,9,.025) =0-25

Flo,9,.975) = 403

The obtained statistic value is

Therefore, decide PN.

Munerical Examples for Section 7.

PN.: L= Lo € Q(K-S-E) vs. N +8S,:

5 5 LAL

Example 7.1.

Data: Data Set A (cross-sectional)




2 19 2
1. Compute S5 = ) 25 for 1<j<6
)} o T
52 = 1.6186 S2 = 2.8889 S2 = 1.4138
1 2 3
2 _ 2 _ 2 _
S4 = 3.0323 S5 = 1.7226 56 3.1484
2. Decide N + SS iff
Dg = sup |G (2) - Go(z)l > d(.05, 6)
2 s >
where G)(z) = P[S; <z | L] = r F, Wz9)dJ, = [ ]
0 14587 (k)
Here w = l/cr2 and J, = Exp(S). 5
Kolmogorov-Smirnov test on S;‘., i
2 5 2 2 :
S”(k) S°(k) ;5 k-1 k S (k) 5
k 2y 7] -5 - 3] |
1+5° (k) 1+8°(k) 1+8° (k) !
u
]
1 1.4138 .0689 .0689 .0978 '
2 1.6186 .0902 - .2431 i
3 1.7226 .1014 - .3986 !
4 2.8889 .2262 - . 4405 |
5 3.0323 .2405 - .5928
6 3.1484 .2518 - .7482
D6 = ,7482 > D(6,.95) = ,521
Decide N + S.
]
|
S — e
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Numerical Examples for Section 8.

PN, : L({Zr-a}} = L, € 2(K-S-E)  for some a
N+ S, L{Zr—a} # Lo for any a
Example 8.1.
Data: First five columns of data Set A
Z1yr co0r P
l\‘ .
Z= .
» Ze1» o0 Zes
1. Form new matrix
Yll’ . Y15
n, n, T_
Y=2 H5 =
YGI’ caey Y65
’
1.037848 - .684439 -1.323319 -1.039538
- .119990 1.347044 .897589 - .352879
- .831179 -1,372096 .839572 - .128918
1.234207 - .559795 .723030 1.825137
-1.060587 1.932456 -~ .786232 - .464495
-2.0211358 -1.815677 - .743263 - .045593
2 ¥ 2
2. Compute S, = X Y, for 1 <j<6
L -7
2 2 2
S1 = 4,377377 82 = 2,759115 S3
2 _ e 2 _ 2
S4 = 5.690535 S5 5.693147 S6

VS.

- .684434
2.121287

- .698959
4.079463

2.376244

.638156

= 3,295005

= 7.936188
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Decide N + S4 iff

6 z

2

D, = sup |G6(z) - Go(z)l > d(.05, 6)

5

Go(z) = p[slli z[ L = [__.§_152_J

0

[The mixing measure here is Exp (5).]

Kolmogorov-Smirnov Test on S§

1+ s2)

s?) s2),° k-1 k _  S°k) 4°
k 52 (k) == ==~ -% & =]
1457 (k) 1+8° (k) 1+57 (k)
1 2.750115 | .213020 .213020 .
2 3.295005 1265743 .099076 .067590
3 4.377377 .357452 .024119 .142548
a 5.690535 -445104 - .221563
5 5.693147 -445256 - .388077
6 7.936188 .552457 - .447543
Dy = -448 < 4(.05, 6) = .521
Decide PN

Numerical Example for Section 9.

PNS: L1 = L2 € (X~S-E)

vs.

9.1 Mann-Whitney-Wilcoxon Rank Sum Test

9.2 K-S two-sample test

Data sets B, C (cross-sectional data)

N + SS: L1 # L2

e ———— e




- 62 -

9.1. Mann-Whitney-Wilcoxon Rank Sum Test

Given two sets of cross-sectional data:

11’ °°°7 71,10 11’ °°'’ 1,10

61° """’ %6,10 61’ "°°* 76,10

Compute radii for each ''look':

0 1/2 (10 21/2
X j ; . DR
j

R1 = 7.4067 (2) R7 = 11,3978 (8)
R, = 9.2428 (5) Rg = 11.9761 4)
Ry = 13.4661 (12) Rg = 11.1978 ¢))
R, = 11.7515  (10) Ry = 7-4447 (3)
RS = 10.0338 (6) Rll = 6,3221 8))
Rg = 8.7033 4) R12 = 11.6063 (9)
The Mann-Whitney U statistic is computeéd as follows: (m=n=6)
n
U, =mn + 2@ _ yRrp)
1 2 1 j
m
= (6)(6) + LéléZl - J(2+54+12+10 +6 +4)
1

=36 +21 - 39 =18
[Note: This statistic is equivalent to the statistic in Decision

Rule 9.1].
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N
U2=mn+_.n_(.“_+_1.)___- ZR(R-)
m+l J

=57 - (8+11 +7+3+14+9)=57-239=18

Decide N +S iff min{u,,U,} <U 5

6,6,.025
since min {UI’UZ} = 18

decide PN

9.2. Kolmogorov-Smirnov 2-sample test

Here m=n =60, and the decision rule is:

Decide N+ S iff D = .
cide i (m,n) > dm,n,.OS «248

D(60,60) = ,1667, Decide PN.
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APPENDIX I1I

(A) Gaussian Markov Processes
(B) Polar Coordinates

(C) Radial Distributions (Table 11.1).
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(A) Gaussian Markov Processes and SE Time Series

Consider the following two Gaussian Markov Processes.

(A) WL (Wiener-Levy) {W(t): t >0}, where W(t) = u(t) + V 2/ 2W(¢) 5
with |
(i) {w*(t): t > 0} being a Gaussian Process, satisfying
(ii  wW*(0) = 0; and ,
(iii) E[W*(t)] = 0;
(iv) Cov[W*(s), W*(t)] = min(s,t). ’ |
(B) O0-U (Ornstein-Uhlenbeck) {U(t): t > 0}, where ?
V(t) = uct) + v % (r), with ;
(i) {u*(t): t 2_0} being a Gaussian Process, satisfying
(ii) u*(0) = 0;
(iii) E[U*(t)] = 0; and Cov[U*(s), U*(t)] = exp {-y|s-t|}
for some vy > 0.
When V 1is a positive constant, the processes (A) and (B) above

are the Wiener-Levy and Ornstern-Uhlenbeck processes, respectively.
Now let V be a positive random variable, i.e., one mixes the

processes and form the random variables

a Wn = W(nd);
b. Y =W_ -NW
n n n-1
c. Vn = V(nd), and
d Xn = Vn - an-l’ where A > 0.
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One can easily verify for the (mixed) W-L processes proposition

(1) The time series {Yn: n>1} is S-E iff u(t) = 0.

(2) The time series {Y1 -, Y, Ya, ...,} is S-E iff u(t)

i
=

(3) The time series {Yn - BA: n>1} is S-FE iff p(t) = Bt +a,
for some «.

For the (mixed) O0-U processes it is valid that

Theorem II.1
(1) {Xx: n>1} is S-E iff B = exp{-vAl

(2) {Vn: n > 1} is approximately S-E iff yA is sufficiently

large. [When YA > 10, one has approximately white noise.]

(B) Polar Coordinates, Direction Angles and Radial Distributions.

For an S-E time series, it is sometimes useful to formulate
problems and solutions in polar coordinates. For an initial segment

of length q, one has

X1 = R sin 61
X2 = R cos 91 sin 62
;q-l = R cos 61 cos 62 ... cos eq_z cos eq_l
Xq = R cos e1 cos 62 ... COS eq_z cos eq_l
where |6j| < g for i =1,2, ..., q~2; and |6q_1| < m; and
2 - gxz
1)

As previously implied (Section 2.C), R and 8 = (91, 92, e 8y 1)
n -

are independent. Further, one can prove (e.g., Smith (1969))
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Theorem II.2. The direction angles 0 = (61, cees Oq 1) have
n -
. . . - _1 .9, -q/2 q-2 q-3
joint density f(g) =3 F(z) T (cos 61] [cos 62] .v. [cos eq-2]‘

The radial distributions, joint densities and characteristic functions
(See Table A.II.1) are related by

Theorem II.3. For an initial q-segment, X = (Xl, veey Xq) of
N

an S-E time series, (i) the characteristic function is of the form

Y
o (t)

w(§ t?) (ii) the density (if it exists) has the form
1

a
£(x)

i

cq ¢(§ X?), and (iii) R has (radial) density 2(r) =
1
2, 79/2 r&1t 9t eed).

Several of the more important densities, ¥(-); characteristic
functions, $(-); and radial distributions g(-) are given in Table II.1
below.

These are given for initial segments of length 'q'", in general,
and for q =1, 2, and 3. Further a scale parameter '"a" is
included in all rows except the first row. The characteristic function

is intractable in the uniform cases and has been omitted.

[
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